A Diagrammatic Proof That Indirect Utility Functions Are Quasi-Convex

Author(s): Wing Suen

Published by: Heldref Publications

Stable URL: http://www.jstor.org/stable/1183478

Accessed: 13/04/2009 10:45

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=held.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

Heldref Publications is collaborating with JSTOR to digitize, preserve and extend access to *The Journal of Economic Education.*
Duality theory has become part of the standard training of economics graduate students and many upper-level undergraduates. My teaching experience suggests that students have little problem understanding why the cost function is concave or why the indirect profit function is convex, because a simple envelope-type diagrammatic argument is readily available (e.g., Kreps 1990; Silberberg 1990; Varian 1984). Many students, however, have difficulty grasping the quasi-convexity of the indirect utility function. Although an algebraic proof can be found in textbooks such as Kreps (1990) and Varian (1984), those who are uninitiated in mathematical language may find the proof unilluminating if not unintelligible. I have constructed a diagrammatic proof for use in class, and students seem to be quite receptive. As a bonus, the proof leads to Roy's identity. The student should be reminded, however, that the diagrammatic proof is meant to supplement—not to replace—the algebraic treatment.

The indirect utility function, \(v(p_1, p_2, y) \), gives the maximum achievable utility when prices are \(p_1, p_2 \) (in the two-good case) and when money income is \(y \). A convenient way to represent an indirect utility function is the price-indifference diagram. A price-indifference curve shows combinations of \(p_1 \) and \(p_2 \) such that the consumer is indifferent. It is downward sloping because, when \(p_1 \) is increased, the consumer can maintain the same utility level only if \(p_2 \) is reduced. Unlike ordinary indifference curves, however, the direction of preference points to the southwest: lower prices are preferred to higher prices. This is a reflection of the fact that indirect utility is a decreasing function in prices.

A function \(v(p_1, p_2, y) \) is quasi-convex in \((p_1, p_2) \) if and only if its lower contour set—the set of prices \((p_1, p_2) \) such that \(v(p_1, p_2, y) \leq k \)—is convex for any \(k \). Because combinations of prices to the northeast of a price-indifference curve yield lower utility than those on the curve, they constitute a lower contour set for the indirect utility function. To prove that the indirect utility function is quasi-convex, it is thus necessary and sufficient to show that the price-indifference curves are convex to the origin. (When a utility function is quasi-concave, the associated indifference curves are also convex to the origin. The apparent inconsistency in terminology is resolved if one notices that ordinary indifference diagrams and price-indifference diagrams have opposite preference directions.)
In Figure 1, the line VV' shows a price-indifference curve. Any point in
the shaded region is preferred to any point on line VV'. As drawn in Figure
1, the price-indifference curve is convex to the origin. To see why this must
be the case, consider an arbitrary point $E = (p_0^0, p_0^1)$. Let (x_1^0, x_2^0) be the op-
timal consumption bundle associated with that set of prices and income.
Draw a line AA' passing through E with slope $-x_1^0/x_2^0$. Any combination of
prices on line AA' has the property that the bundle (x_1^0, x_2^0) is affordable with
the initial budget. (More precisely, the equation for line AA' is $p_1 x_1^0 + p_2 x_2^0
= p_1^0 x_1^0 + p_2^0 x_2^0$. The slope of the line is therefore $dp_2/dp_1 = -x_1^0/x_2^0$, as
stated.) Thus, if indirect utility at E is v_0, the level of utility at any point on
AA' must be at least v_0. When prices change from point E to some other
point on AA', the consumer can maintain the same utility level by keeping
his consumption bundle unchanged. Usually he can do better by substitut-
ing away from the good that is now more expensive. It follows that the
price-indifference curve for utility level v_0 must lie within area AEC to the
left of E and within $A'EC'$ to the right of E. VV' is therefore bounded be-
low by AA' and is tangent to AA' at E. (The tangency condition obtains
when the consumer maximizes utility at a regular interior solution. The stu-
dent may be invited to guess what the price-indifference curve would look
like when x_1 and x_2 are perfect substitutes or perfect complements.) This in
turn implies that the price indifference curve is convex in the neighborhood
of E. Because the point E is arbitrary, the same argument can be used to
show that price-indifference curves are everywhere convex to the origin. In
other words, the indirect utility function is quasi-convex.

![Figure 1: A Convex Price-Indifference Curve](image-url)
Our argument also establishes that, for the regular case, the price-indifference curve has the same slope as AA' at point E. Thus, $-\frac{\delta v/\delta p_1}{\delta v/\delta p_2} = -x_i/x_j$. As an exercise, the student can be asked to show that this tangency condition is just a restatement of Roy's identity. (Hint: Apply Euler's theorem to the indirect utility function. Then plug in the tangency condition and use the budget constraint.)

REFERENCES

STUDENTS SOLVE ECONOMIC MYSTERIES with CAPSTONE

The Nation's High School Economics Course

The CAPSTONE course lets your students solve many economic mysteries. By looking at the choices people make and just what influences those choices, students learn that economic analysis can make sense out of puzzling behavior. The program focuses sharply on reasoning by posing certain issues or events as mysteries. For example: Why are young people, the future of our country, the group with the highest level of unemployment? Students unravel this mystery by acting as detectives, seeking and observing economic clues, then drawing logical conclusions.

Mail coupon to: JOINT COUNCIL ON ECONOMIC EDUCATION / MARKETING DEPT. 432 PARK AVENUE SOUTH, NEW YORK, NY 10016

☐ Please send the complete CAPSTONE teaching package: *Teacher Resource Manual* and *Student Activities Book* plus a bonus set of resource materials—all in a convenient storage box. I understand the Joint Council will bill me for $119.95, plus shipping and handling.

Name ___ Position ____________________________

School __

Street Address __

City, State, Zip _______________________________________

Purchase Order No.: ___________________________ Date: ___________________________

School Telephone No.: ___________________________

☐ Send more information on CAPSTONE.